If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.25x^2+8x-612=0
a = 0.25; b = 8; c = -612;
Δ = b2-4ac
Δ = 82-4·0.25·(-612)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-26}{2*0.25}=\frac{-34}{0.5} =-68 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+26}{2*0.25}=\frac{18}{0.5} =36 $
| 0.2x-3=1.2x-7 | | 16x+38=8x | | 2+2x+4=14 | | 0,25x^2+8x-766,25=0 | | x-(-23)=-3 | | 3/12=v/75 | | (11x-63)+(2x+20)=180 | | 15/3=x/10 | | n/15=12/4 | | 4/h=64/8 | | 3/4=c/12 | | 22/8=f/4 | | 90+70+n=180 | | 6+7x=3(12+4x) | | 9x^2=11+18x | | v+10=-6 | | 5x-10=60=180 | | 6(15-x)=2x+34 | | 80-x=20 | | 8m-22=36 | | 90+140+n=180 | | 4(3x-2)=8x-28 | | 90+65+n=180 | | 16x-40=8(2x-5) | | N²-25n+100=0 | | 90+10+n=180 | | 43+62+x=180 | | (8x+15)°(3x+2)°(5x+3)°=180 | | 4=x/4-1 | | x²-2x=2.5 | | X*3.15=200+x | | x21=501 |